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Abstract. In many biological systems like whole cells, membranes or proteins and some of the polymeric
systems, dynamics reveals itself in Mössbauer spectra as a non Lorentzian behaviour above some particular
temperature which is characteristic of the system. Moreover mean square displacement and line width show
temperature dependence above the characteristic temperature. Brownian motion of harmonically bound
oscillator has been able to explain the non-Lorentzian behaviour. In the present paper, a quantum picture of
the above model is discussed and lineshape is expressed as the closed form for the extreme overdamping case.
In addition to the non-Lorentzian behaviour, the present model also predicts a temperature dependence
of mean square displacement and linewidth.

PACS. 87.10.+e General, theoretical, and mathematical biophysics (including logic of biosystems,
quantum biology, and relevant aspects of thermodynamics, information theory, cybernetics, and bionics)
– 76.20.+q General theory of resonances and relaxations – 76.80.+y Mössbauer effect; other-ray
spectroscopy

1 Introduction

Mössbauer absorption spectra of various biological sys-
tems such as proteins, membranes and whole cells and
some polymeric systems show unusual features [1–9]. It
is observed that (i) above a certain temperature which is
characteristic of the system, the spectrum exhibits a sec-
ond broad line besides the usual narrow line at the same
frequency, (ii) f -factor (recoilless fraction) shows a tem-
perature dependence which is not typical of the Einstein
or the Debye model and (iii) the width of the lineshape
increases with the temperature.

In addition to the Mössbauer spectroscopy, protein dy-
namics is being studied by the Nuclear Magnetic Reso-
nance (NMR) [10], Neutron scattering [11], X-ray dynam-
ical analysis and, more recently, by the RSMR (Rayleigh
Scattering of Mössbauer Radiations). By using RSMR,
some interesting results have been reported [12,13,28]
which are consistent with the Mössbauer results.

Two extreme theoretical models of bounded diffusion
have been used to analyse the results, one is of discrete [3]
and the other is of continuous nature [15]. In the for-
mer, it is assumed that an atom can jump stochastically
between finite number of fixed points with a constant
jump probability per unit time. The continuous case is
based on the assumption that the particle is bound in a
three-dimensional well and whose motion is overdamped
by strong frictional forces. It is observed that within a
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certain range of parameters D (diffusion constant) and
α (ratio of the harmonic force constant to the damping
force constant), the spectrum is made up of a narrow
line and a wide component and fits well the experimen-
tally observed spectra. Nowik et al. [16] have considered
a generalised case of continuous diffusion and discussed
the extreme underdamped case in addition to the extreme
overdamped case and expressed the respective lineshapes
in closed form. It may be noted that in both the jump
and continuous diffusion models, the total area under the
Mössbauer lineshapes remains unaffected by diffusive mo-
tion [14,16]. Thus, the appearance of the diffusive mo-
tion above the critical temperature should not affect the
temperature dependence of f (recoilless fraction). How-
ever, experimentally it has been observed that above the
critical temperature, f shows an additional temperature
dependence [17] and area under the Mössbauer lineshape
does not remain constant. Hence, in both of the mod-
els, described above, besides assuming diffusive motion,
one has to assume an additional degree of freedom to ac-
count for the temperature dependence of f . An attempt
has been made to understand the temperature dependence
of the mean square displacement in terms of extending the
Brownian motion oscillator model [18,19].

In the present, paper, quantum picture of the harmon-
ically bound oscillator in Brownian motion has been dis-
cussed and line shape is expressed in the closed form for
extreme overdamped case. The calculations are based on
the assumption that the unfrozen conformational states
may be represented in terms of overdamped quantum
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oscillators acted upon by random force. It is worth men-
tioning here that the quantum picture has already been
considered for such problems as Afanseev and Sedov [27]
treated the problem of diffusion by introducing an opera-
tor called “relaxational operator” and reduced the prob-
lem to a solution of Schrodinger equation for a given
potential. After making the “relaxational operator” Her-
mitian, it becomes the Hamiltonian operator describing
the motion of a quantum particle for a given potential. But
theoretically predicted MSD versus temperature curves
predicted by Afanseev and Sedov [27] do not agree with
experimentally observed behaviour.

2 Lineshape using classical correlation
function

Presence of diffusive motions in biological systems was
first reported by Cohen et al. [1] in oxygen binding pro-
tein, myoglobin, in two of its forms, metmyoglobin and
deoxymyoglobin and in Ferritin, a crystal of iron stor-
age proteins. Similar phenomena has been observed in
haemoglobin by Mayo, Parak and Mössbauer [3]. Pio-
neering studies on the use of Mössbauer absorption spec-
troscopy has been done by Keller and Debrunner for
oxymyoglobin in frozen solutions [17], Parak, Prolov,
Mössbauer and Glodanskii [30] on the crystals of metmyo-
globin. In all these systems, lineshape was non-Lorentzian
above some particular temperature (system dependent)
and other features like sharp fall in the recoil-free fraction
and increase of linewidth with temperature have also been
reported.

Singwi and Sjolander [31] were first to predict the pos-
sibility of diffusion studies by Mössbauer spectroscopy and
obtained a general formula for Mössbauer spectrum in
terms of classical self correlation function. For one dimen-
sional harmonic oscillator in Brownian motion Ulhenbeck
and Ornstein [32] derived a general formula for self cor-
relation function G(x, x0, t), which is the probability that
at time t, nucleus will be at position x if at time zero it
was at position x0. Nowik et al. [15,16] generalized this
self correlation function to three dimensions for the over-
damped case with the condition λt � 1 (λ = damping
constant) and obtained a simple formula for Mössbauer
lineshape which is given as

I(ω) =
1

2π

∫ ∞
−∞

dt exp

[
−i(ω − ω0)t−

1

2
Γ |t|

]
−

(
k2D

α

)
(1− exp(−α|t|)) (1a)

where α = w2

λ
, w is the harmonic force constant. Nowik

et al. were able to explain non-Lorentzian behaviour of
biological systems using equation (1a) by varying param-
eter α, which is the ratio of harmonic force constant to
the damping force constant. Here it is important to note
that Gunther et al. [33] were first to argue that Mössbauer
effect can used as an experimental tool to study Brown-
ian motion. Again Gunther et al. [34] were first to predict

that Brownian motion of Mössbauer atom results in non-
Lorentzian nature of Mössbauer lineshape.

3 Lineshape using quantum correlation
function

The present paper is essentially quantum version of Nowik
et al. paper [16]. In this paper, we show that quantum pic-
ture not only explains non-Lorentzian behaviour but also
fits well to the temperature dependence of mean square
displacement and linewidth, which is not possible from
classical approach.

Agarwal developed the quantum version of Ulhenbeck
and Orstein theory [21] by using phase space distribution
function. Dattagupta [12] considered the Brownian motion
of the quantum system and derived the master equation.
Self-correlation function in quantum case is defined as [23]

G(k, t) = 〈exp[−ikx(t)] exp[ikx(0)]〉 (1b)

where x(0) is the position operator of the nucleus at time
zero and x(t) is its Heisenberg form at time t. Duttagupta
and Reiter [23] used Agarwal ’s formalism to derive self
correlation for the quantum oscillator in the Brownian mo-
tion. we use this quantum correlation function and for the
overdamped case with λ � w, λt � 1, self correlation
function is given as

G(k, t) = exp[−D(t) k2] (1c)

where

D(t) = (~/2mw2) sinhw2t exp(−λt) + (~η/mw2)

× [1− exp(−λt)](coshw2t+ (λ/w2) sinhw2t)
(2)

when w2
2 = λ2 − w2 > 0

For the overdamped case with λ� w, λt� 1 and

η = [exp(β~w2)− 1]−1. (3)

Following the approach of Nowik et al. [16], the second
term of D(t), after simplification, turns out to be equal to

~η
mw2

[
1− exp

(
w2

2

2λ
− t

)]
so that

D(t) =

(
~

2mw2

)
sinh (w2t) exp(−λt) +

(
hη

mw2

)
×

[
1− exp

(
−
w2

2

2λ
t

)]
=

~
2mw2

[
e(w2−λ)t − e−(w2+λ)t

2

]
+

hη

mw2

[
1− exp

(
−
w2

2λ
t

)]
.

Now w2 = (λ2 − w2)1/2 = λ− w2

2λ , w2 − λ = −w
2

2λ ·
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Also w2 ≈ λ.
Hence

D(t) =

(
~

2mw2

)[
e(−w2/2λt)

2
−
e−2λt

2

]

+
~η
mw2

[
1− exp

(
−
w2

2λ
t

)]
.

Since λt � 1, exp(−2λt) can be neglected. Let α =
w2/2λ, we have

D(t) =
~η
mw2

+

[(
~

4mw2
−

~η
mw2

)
exp(−α | t |)

]
. (4)

The Mössbauer lineshape can be written as

I(ω) =
1

2π

∫ ∞
−∞

dt exp[−i(ω − ωo)t− 1/2Γ | t |]

× exp[−D(t)k2]. (5)

For the extreme case of overdamping, the lineshape in the
closed form is given by

I(ω) = exp
(
−k2〈x〉2q

) [ ∞∑
n=0

1

n!

(
~k2η

mw2
−

~k2

4mw2

)n
(Γ/2 + nα)/π

((Γ/2 + nα)2 + (ω − ωo)2

]
(6)

where 〈x〉2q = ~η/mw2.
It is evident from I(ω) that area under the curve does

not remain constant. In some systems like single crystal
proteins or oriented membranes [16], Mössbauer spectra
may have contributions due to anisotropic diffusive mo-
tions. For such cases, one has to consider independent
motions along these axes. Hence, for an anisotropic over-
damped harmonic oscillator, with independent motions
along the three axes, equation (6) can be rewritten as

I(w) =
1

2π

∫ ∞
−∞

dt exp[−i(ω − ωo)t− 1/2Γ | t |

× exp
[
Σj=x,y,z −Dj(t)k

2
j

]
(7)

where

Dj(t) =
~η

mw2j
+

[(
~

4mw2j
−

hη

mw2j

)
exp (−αj | t |)

]
(8)

with αj = w2
2j/λj , (j = x, y, z).

The lineshape for polycrystalline samples result due
to various transitions between various substates. In the
case of overdamped harmonic oscillators for the Einstein
Model of a solid, the Mössbauer lineshape in presence of
the quadrupole interaction is given as

I(ω) =
1

8π2

∫
φ

∫
θ

∫ ∞
−∞

dt [exp−i(ω − ωo)t− Γ/2 | t |]

× exp
[
−Dx(t)k2 cos2 θ − k2 sin2 θ

[
cos2 φ Dy(t)

+ sin2 φ Dz(t)
]]
f(∆m, θ) sin θ dθ dφ

(9)

where Dx, Dy and Dz are given by equation (8). Equa-
tion (9) is essentially the spectral shape of a nuclear tran-
sition taking place between the quantum numbers M1

and M2 with M1 − M2 = ∆m, for a powder sample
in presence of the Karyagin-Goldanskii effect. f(∆m, θ)
for the transition 57Fe is given by f(0, θ) = (3/2) sin2 θ
and f(±1, θ) = (3/4)(1 + cos2 θ). For the axial symmetry,
〈z2〉 = 〈y2〉 and µ = cos θ. In this case, equation (9) can
be written as

I(ω) =
1

2π

∫ ∞
−∞

dt

∫ 1

0

exp[−i(ω − ωo)t− 1/2Γ | t |]

× exp[−k2Dx(t)µ2 − k2Dy(t)(1− µ
2)]fs(µ)dµ

(10)

where f1(µ) = 3
4 (1 + µ2) and f2(µ) = 3

4

(
5
3 − µ

2
)
.

This theoretical treatment holds for the case when all
oscillators have the same frequency, i.e., Einstein’s Model.
For Debye Model, one has to consider a distribution of
frequencies.In order to derive generalized lineshape, we
express the displacement r of the nucleus for the systems
like proteins and polymers, in terms of normal coordinates
ql [16] where l = 1, 2, ..., N . If the wave vector of the γ-ray
is k = kε we can write [16]

(k.r) = k(ε.r) = k
∑
l

alql. (11)

Assuming that all the normal-modes coordinates follow
the harmonic motion and if in all the cases overdamped
limit holds, and since all normal modes are statistically
uncorrelated [16] hence the lineshape can be written as

I(ω) =
1

2π

∫ ∞
−∞

dt exp[−i(ω − ωo)t− 1/2Γ | t |]

× exp

[
−

N∑
l=1

Dl(t)a
2
l k

2

]
(12)

where

D1(t) =
~η
mw2l

+

[
~

4mw2l
−

η~
mw2l

]
exp(−αl | t |)

and αl = w2
l /2λl.

Out of N possible modes there may be, say, j modes
for which ω2

j/λj � Γ will hold. For such a practical sit-
uation, the experimentally observed lineshape can be ap-
proximated by

Iexpt(ω) = exp

−k2
∑
j=1

a2
j

~η
mw2j

 1

2π

×

∫ ∞
−∞

exp[−i(ω − ωo)t− 1/2Γ | t |]

× exp

−k2
∑
l6=j

a2
l

(
~

4mw2l
−

η~
mw2l

)
exp(−αl | t |)

 .
(13)
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3.1 Translational and free-rotational diffusions

In the case of macro molecular systems, like proteins and
polymers, the rotational diffusion may also influence the
Mössbauer lineshape. The intermediate scattering func-
tion for a γ-ray with a wave-vector k is given by

Grot(r, k, t) =
∞∑
l=0

(2l + 1)J2
l (kr)e−l(l+1)Drott (14)

where Jl(x) is a Bessel function of order l and Drot is the
rotational diffusion constant. For the case in which ro-
tational and translational diffusions are independent, the
intermediate scattering function is given as

Gtot(r, k, t) = GrotD(t). (15)

For a spherical particle of radius R with a homogenous
density of the nuclei, the lineshape would be represented
by

I(ω) =
3

R3

∫ R

o

I(r, ω)r2dr (16)

where

I(r, ω) =
1

2π

∫ ∞
−∞

exp[−i((ω − ωo)t− Γ/2 | t |]

×Gtot(r, k, t)dt

=
∞∑
l=0

∞∑
n=0

anl(r)Γnl/2π

(Γnl/2)2 + (ω − ωo)2
(17)

with

Γnl/2 = Γ/2 + nα+ l(l + 1)Drot

and

anl =

exp

(
−k2 ~η

mw2

)
1

n!

(
~k2η

mw2
−

~k2

4mw2

)n
(2l + l)J2

l (kr).

The intensity of the spectrum is given as

Anl R =
3

R3

∫ R

o

anl(r) r
2 dr

=
3

2
exp

(
−k2 ~η

mw2

)
1

n!

(
~k2η

mw2
−

~k2

4mw2

)n
(2l + 1)

×

[
J2
l (kR) + J2

l−1(kR)−
(2l+ 1)

kR
Jl(kR)Jl−1(kr)

]
.

(18)

It has been observed that the rotational diffusion affects
Mössbauer by ∼ 20−30%. It has been experimentally ob-
served in the spectra of iron magnetic particles located in
bacteria [28].

3.2 Mean square displacement and linewidth

The mean square displacement (MSD) is given by

〈x2〉q = (~/mw2)η (19)

where η = [exp (β~w2)−1]−1. In the classical limit ~→ 0

〈x2〉 = kBT/mw
2
2. (20)

The diffusion constant D is given by

D = ~w2η/mλ (21)

where λ is the damping constant. In the classical limit,
(~→ 0), the relation between the MSD and diffusion con-
stant can be written as

〈x2〉 = (λ/w2
2)D = D/α. (22)

where α = w2
2/λ.

The effective MSD can be defined as

〈x2〉e = mw2〈x
2〉/~. (23)

The effective line width can be obtained [16] by equating

Γeff/2π

(Γeff/2)2 + (ω − ωo)2
=

1

π
exp{−k2〈x2〉q}

×

[
Γ/2

((Γ/2)2 + (ω − ωo)2
+ k2

(
~η
mw2

−
~

4mw2

)
×

(Γ/2 + α)/π

(Γ/2 + α)2 + (ω − ωo)2

]
(24)

which, for ω = ωo, gives the effective line-width Γeff as

1

Γeff
=

1

π
exp[−k2〈x2〉q]

×

[
2

Γ
+

(
~η
mw2

−
~

4mw2

)
1

(Γ/2 + α)

]
· (25)

In the classical limit, ~ → 0 mean square displacement
(msd) is given as equation (22). The relation between msd
and diffusion constant is given in equation (10). In the
classical limit, ~→ 0 in equation (6), I(ω) reduces to

I(w) = exp(−k2〈x2〉)
∞∑
n=0

1

n!
(k2〈x2〉)n

×
(Γ/2 + nα)/π

(Γ/2 + nα)2 + (ω − ωo)2
· (26)

The equation is the same as equation (5), obtained by
Nowik et al. in the reference [16]. From the above equation,
it is clear that the area under the curve remains constant
because first two terms in equation (26) cancel out. Thus
classical diffusion does not contribute to the recoil free
factor and its temperature dependence is decided by the
Debye model only. But in quantum case first two terms in
equation (6) do not cancel out and quantum diffusion also
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Fig. 1. Mössbauer Spectra of harmonically bound overdamped
oscillators using equation (8). The plot is between I(ω) and
velocity and by setting w2

2 = αλ. Curves marked from 1 to 9
have been obtained for different values of α. (1) α = 66; (2)
α = 65; (3) α = 62; (4) α = 58; (5) α = 55; (6) α = 50; (7)
α = 40; (8) α = 10; (9) α = 1.

contributes to f factor apart from contribution due to De-
bye model. So classical models explain non-Lorentzian be-
haviour but cannot explain the temperature-dependence
of msd and the linewidth. The quantum approach makes
a difference when it comes to explaining the msd versus
temperature behaviour and the linewidth versus tempera-
ture behaviour, apart from explaining the non-Lorentzian
behaviour.

4 Discussion

The iron atom is known to be a vital part in life processes,
as it is directly involved in storage of oxygen (haemoglobin
and myoglobin ) and electron transport (cytochrome and
ferredoxins). It is also known that the interior of a pro-
tein molecule has two types of bonds. Along the amino-
acid sequence, the backbone of the molecule is formed by
strong covalent bonds, while the tertiary structure is the
result of weak hydrogen-like bonds. A protein molecule
has been visualised as a system, which is fluctuating over
a large number of conformational substates. Molecules in
different states have the same gross structure but differ
in local configurations [24]. At local levels, there is a con-
stant breaking and reforming of non-covalent bonds. The
experiment of Austin et al. [25] implies that, although the
different conformational substates have the same biologi-
cal function but at different rates. At a low temperature,

Fig. 2. This shows a plot of total mean square displacement for
fixed value of ~w/k = 700 K, but for various values of Debye
temperature (1) θD = 100 K, (2) θD = 150 K, (3) θD = 200 K
and (4) θD = 300 K.

protein molecule is assumed to be frozen in one of the con-
formational substates of the distribution of the states. But
at elevated temperature, the protein molecule may leave
its conformational substate and enter a transition state
with a certain degree of mobility before it gets trapped
in another conformational substate. The motion in the
transition state is identified with the diffusion of an over-
damped Brownian quantum oscillator. The lineshape ob-
tained for such an assumption is given by equation (6).
The onset of the transition from one conformational sub-
state to another also defines the characteristic tempera-
ture of the system. Below the characteristic temperature,
all the conformational substates are frozen. Since the char-
acteristic temperature is system dependent, each protein
or polymeric system will have its own characteristic tem-
perature, e.g., for deoxy Mb it is 265 K. We have used
equation (6) to compute the Mössbauer absorption spec-
trum. Figure 1 shows the computed Mössbauer spectra
of harmonically bound quantum oscillators in Brownian
motion as a function of the parameter α = w2

2/λ. It is
observed that for an intermediate values of α, the spectra
have a peculiar shape which is typical of some biological
and polymeric systems. The total mean square displace-
ment can be written as

〈x2〉T = 〈x2〉V + 〈x2〉D (27)

〈x2〉V is the contribution of vibrational degrees of free-
dom modelled in the present case by the Debye model.
〈x2〉D is the contribution due to the diffusional motion.
〈x2〉D has been modelled by considering different confor-
mational states as quantum oscillators in the Brownian
motion. Figure 2 shows a plot of mean square displace-
ment for a fixed value of ~w/k and for different values of
the Debye temperature.
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Fig. 3. This depicts a plot of total mean square displacement
for fixed value of Debye temperature θD = 200 K and for var-
ious values of ~w/k; (a) ~w/k = 100 K, (b) ~w/k = 175 K,
(c) ~w/k = 250 K, (d) ~w/k = 350 K, (e) ~w/k = 500 K, (f)
~w/k = 750 K, (g) ~w/k = 1000 K, and (h) ~w/k = 1250 K.

Fig. 4. Temperature dependence of total mean square dis-
placement curves: the hollow traingles correspond to experi-
mental data for Fe2+ bound to bacteriohodopsin [29] and fitted
curve correponds to hw/k = 920 K for the Debye temperature
equal to 120 K; the filled traingles correspond to the experi-
mental data of freeze dried metmyoglobin samples [29] and the
fitted curve corresponds to hw/k = 980 K for the Debye tem-
perature equal to 300 K; and filled circles correspond to iron
in chromatophes of Rhodospirillum Ruburum samples [29] and
the fitted curve corresponds to hw/k = 900 K for the Debye
temperature equal to 160 K.

Fig. 5. Temperature dependence of total mean square dis-
placement curves; the filled circle data corresponds to ex-
perimental data for Lechthin samples [29] and hollow circle
data corresponds to Fe3+ bound to bacteiorhodospin sam-
ples [29]. Lechtin data has been fitted to curve correspond-
ing to hw/k = 1050 K and Debye temperature equal to 140 K.
Bacteiorhodospin data has been fitted to the curve correspond-
ing to hw/k = 1250 K and Debye temperature equal to 150.

Fig. 6. Temperature dependence of linewidth for ~w/k =
500 K (a), 600 K (b).

From this figure, it is clear that greater the Debye tem-
perature, smaller is the mean square displacement and
vice versa. Also Debye temperature does not decide the
shape of the curve. In contrast to this, Figure 3 depicts a
plot of the mean square displacement for fixed values of
the Debye temperature but for various values of ~w/k.

It is evident from Figure 3 that not only the values of
the mean square displacement but also the shape of the
curves is decided by the ratio ~w/k; it is clear that more
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Fig. 7. Specta for harmonically bound overdamped Oscillator
using equation (10) for k2〈x2〉q = k2〈y2〉q = 2. For curve (a)
for αx = 4 and αy = 40 and for curve (b) αx = 8 and αy = 8.

the value of harmonic force constant w, less is the effect
on the curvature of the figures, and vice versa. This is also
demonstrated in Figures 4 and 5.

Figure 4 shows the plot of metamyoglobin, Fe2+ bound
to bacteriorhodospin and Rhodospirillim Rubrum sam-
ples. Figure 5 shows Fe3+ in bacteriorhodospin and Lec-
thin samples. Figure 6 depicts the temperature depen-
dence of the linewidth.

In Figure 7, the Mössbauer spectra of harmonically-
bound particles, acted upon by axially symmetric
anisotropic damping forces, is depicted. The asymmetry in
the spectra is observed even for α values being equivalent
for two lines as is clear in Figure 7. The most important
contribution of the present picture is (i) temperature de-
pendence of msd (mean square displacement) (ii) temper-
ature dependence of the linewidth can be explained with
out taking into account additional degrees of freedom.

I am very thankful of anonymous referees for turning my at-
tention towards few additional references and also for their
critical assessment which helped in improvement of this paper.
I am also thankful of my colleague Dr C.L. Kaul for his help
in solving some equations.
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